Computations over finite monoids and their test complexity
نویسندگان
چکیده
منابع مشابه
Complexity Analysis: Finite Transformation Monoids
We examine the computational complexity of some problems from algebraic automata theory and from the field of communication complexity: testing Green’s relations (relations that are fundamental in monoid theory), checking the property of a finite monoid to have only Abelian subgroups, and determining the deterministic communication complexity of a regular language. By well-known algebraizations...
متن کاملMultiparty Communication Complexity of Finite Monoids
We study the relationship between the complexity of languages, in Yao's 2-party communication game and its extensions, and the algebraic properties of nite monoids that can recognize them. For a nite monoid M, we deene C (k) (M) to be the maximum number of bits of communication that players need to exchange, in the k-party game of Chandra, Furst and Lipton, to decide membership in any language ...
متن کاملMonoids and Computations
This contribution wishes to argue in favour of increased interaction between experts on finite monoids and specialists of theory of computation. Developing the algebraic approach to formal computations as well as the computational point of view on monoids will prove to be beneficial to both communities. We give examples of this two-way relationship coming from temporal logic, communication comp...
متن کامل-torsion free Acts Over Monoids
In this paper firt of all we introduce a generalization of torsion freeness of acts over monoids, called -torsion freeness. Then in section 1 of results we give some general properties and in sections 2, 3 and 4 we give a characterization of monoids for which this property of their right Rees factor, cyclic and acts in general implies some other properties, respectively.
متن کاملOn the U-WPF Acts over Monoids
Valdis Laan in [5] introduced an extension of strong flatness which is called weak pullback flatness. In this paper we introduce a new property of acts over monoids, called U-WPF which is an extension of weak pullback flatness and give a classification of monoids by this property of their acts and also a classification of monoids when this property of acts implies others. We also show that regu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Theoretical Computer Science
سال: 1991
ISSN: 0304-3975
DOI: 10.1016/0304-3975(91)90161-t